The need for knowledge extraction: Understanding harmful gambling behavior with neural networks

Abstract

Responsible gambling is a field of study that involves supporting gamblers so as to reduce the harm that their gambling activity might cause. Recently in the literature, machine learning algorithms have been introduced a a way to predict potentially harmful gambling based on patterns of gambling behavior, such as trends in amounts wagered and the time spent gambling. In this paper, neural network models are analyzed to help predict the outcome of a partial proxy for harmful gambling behavior: when a gambler “self-excludes”, requesting a gambling operator to prevent them from accessing gambling opportunities. Drawing on survey and interview insights from industry and public officials as to the importance of interpretability, a variant of the knowledge extraction algorithm TREPAN is proposed which can produce compact, human-readable logic rules efficiently, give a neural network trained on gambling data. To the best of our knowledge, this paper reports the first industrial-strength application of knowledge extraction from neural networks, which otherwise are black-boxes unable to provide the explanatory insights which are crucially required in this area of application. We show that through knowledge extraction one can explore and validate the kinds of behavioral and demographic profiles that best predict self-exclusion, while developing a machine earning approach with greater potential for adoption by industry and treatment providers. Experimental results reported in this paper indicate that the rules extracted can achieve high fidelity to the trained neural network while maintaining competitive accuracy and providing useful insight to domain experts in responsible gambling.

Problem with this document? Please report it to us.